ITT mess around with [math]LaTeX[/math]

ITT mess around with [math]\LaTeX[/math]

[eqn]
\begin{pmatrix} a \\ a \\ a \\ a \\ a \\ a \\ a \\ a \\ a \\ a \\ a \\ a \\
\end{pmatrix}
[/eqn]

Good idea for a thread OP

[eqn] \oint_{ \partial S } F \cdot \mathrm{d} s = \iint_S \mathrm{curl}(F) \cdot \mathrm{d} \Omega [/eqn]

Whoops that first integral shouldn't be an \oint.

[math]\color{#db2b2b}I\text{ }\color{#db5f2b}r\color{#db932b}a\color{#dbc62b}i\color{#bcdb2b}n\color{#88db2b}b\color{#55db2b}o\color{#2bdb36}w\color{#2bdb69}e\color{#2bdb9d}d\text{ }\color{#2bdbd0}y\color{#2bb2db}o\color{#2b7edb}u\color{#2b4adb}r\text{ }\color{#402bdb}m\color{#742bdb}o\color{#a72bdb}m[/math]

How do you get latex to work with 4chanx?

[math]\ learn_{2 \to limits}\ you=faggot[/math]

just werks

testing with my $limited_{knowledge}$

$faggot$

[math]limited_{knowledge}[/math]

am doing right?
[math]\"me"{plus}"your mom"{equals}"lol no thanks"[/math]

[ math ]
[ /math ]
tags without the spaces, both with or without Veeky Forums X.
Or eqn instead of math if it's on its own line and you want things a bit larger.
Veeky Forums X has alt+E and alt+M shortcuts.

I mean it doesn't show up at all.
Works fine with 4chanx disabled

Nevermind, it seems to be working again in the latest version.

[math] PV = nRT [/math]

[math] N_2 + 3H_2 \longrightarrow 2NH_3 [/math]

[math] \frac{[NH_3]^2}{[N_2][H_2]^3} [/math]

Use \mathrm for chemical names, your spacing is fucked up otherwise. Especially important for two-letter chemical names like [math]\mathrm{Al}[/math].

[math]\memories[/math]

test
[eqn]\sum _{i=1}^{\infty } \text{i = -}\frac{1}{12}[/eqn]

Let's see...

[math] \mathrm{PV = nRT} [/math]

[math] \mathrm{N_2 + 3H_2 \longrightarrow 2NH_3} [/math]

[math] \mathrm{\frac{[NH_3]^2}{[N_2][H_2]^3}} [/math]

It certainly is better. Any idea on how to write in organic structures?

[math]x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{^{x}}}}}}}}}}}}}}}}}}}}}}}[/math]

I wouldn't use it for normal variables such as [math]PV=nRT[/math]. I don't think you're going to be able to do much else in chemistry here. There are useful libraries in an environment where you can use what you want with LaTeX. I checked google and two common libraries are ochem and chemfig.

Testing

[eqn]
(i \gamma_{/mu} \partial^{\mu} - m)\psi = 0
[\eqn]

your i's don't match

[math]\color{#db2a23}{\text{n}}\color{#dd3424}{\text{i}}\color{#de3d26}{\text{c}}\color{#df4628}{\text{e}}[/math] [math]\color{#e2592b}{\text{t}}\color{#e3622d}{\text{r}}\color{#e46b2f}{\text{y}}\color{#e67431}{\text{,}}[/math] [math]\color{#e68333}{\text{b}}\color{#e58a35}{\text{u}}\color{#e59236}{\text{t}}[/math] [math]\color{#e29d39}{\text{y}}\color{#dfa23a}{\text{o}}\color{#dda73b}{\text{u}}\color{#dbab3c}{\text{'}}\color{#d7ae3e}{\text{l}}\color{#d3b13f}{\text{l}}[/math] [math]\color{#cbb742}{\text{n}}\color{#c6b844}{\text{e}}\color{#c1ba46}{\text{e}}\color{#bcbb48}{\text{d}}[/math] [math]\color{#b1bd4d}{\text{a}}\color{#acbd50}{\text{n}}\color{#a6bd54}{\text{o}}\color{#a0bd57}{\text{t}}\color{#9bbd5b}{\text{h}}\color{#95bc5f}{\text{e}}\color{#90bc64}{\text{r}}[/math] [math]\color{#85ba6e}{\text{1}}\color{#80b973}{\text{0}}\color{#7bb778}{\text{0}}\color{#76b67e}{\text{0}}[/math] [math]\color{#6db28a}{\text{y}}\color{#69b090}{\text{e}}\color{#65ad96}{\text{a}}\color{#61aa9c}{\text{r}}\color{#5da8a2}{\text{s}}[/math] [math]\color{#56a0ad}{\text{o}}\color{#539cb2}{\text{f}}[/math] [math]\color{#4d94bd}{\text{t}}\color{#4b8ec0}{\text{r}}\color{#4988c4}{\text{a}}\color{#4683c8}{\text{i}}\color{#447dcb}{\text{n}}\color{#4276cd}{\text{i}}\color{#416fce}{\text{n}}\color{#4068ce}{\text{g}}[/math] [math]\color{#3e59cf}{\text{t}}\color{#3e51cc}{\text{o}}[/math] [math]\color{#3f42c7}{\text{d}}\color{#3f3ac4}{\text{e}}\color{#4234be}{\text{a}}\color{#462db8}{\text{f}}\color{#4927b2}{\text{e}}\color{#4d21ac}{\text{a}}\color{#531da5}{\text{t}}[/math] [math]\color{#651c96}{\text{m}}\color{#6e1c8e}{\text{e}}\color{#781b86}{\text{.}}[/math]

Whats its derivative?

[math]\begin{pmatrix}\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}&\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}\\\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}&\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}\end{pmatrix}[/math]

[math]{{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}^{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}}_{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}}}^{{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}^{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}}_{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}}}}_{{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}^{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}}_{{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}^{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}_{{\text{:^)}^{\text{:^)}}_{\text{:^)}}}}}}}}}[/math]

nice

[math] \displaystyle G_{\mu\nu} - 8\pi T_{\mu\nu} = (i \partial / - m)\phi [/math]

Good.

Yeah, it was bugged with 4chanX for a while, fixed now though.

A trivial fiber bundle is the quadruple [math](E, M, \pi, F)[/math] when [math]\pi \colon (E = M \times F) \to M.[/math]

The identity element on a set A is [math]\operatorname{id}_A \colon A \to A,\ a \mapsto a[/math] for all [math]a \in A[/math]. For example, on an infinite dimensional Hilbert space [math]\mathcal{H}[/math] with canonical basis [math]\{ e_i \}_{i \in \mathbb{N}},[/math] [eqn]\operatorname{id}_\mathcal{H} = \sum_{i = 1}^\infty e_i \otimes e_i^*,[/eqn] where [math]\{ e_i^* \}_{i \in \mathbb{N}}[/math] denotes the canonical basis of the dual space [math]\mathcal{H}^*.[/math]

Prove that for all [math]n \in \mathbb{Z}[/math], we have
[eqn]\sum_{d|n} \phi (n) = n[/eqn].

Needs to be [math]n \in \mathbb{Z}^+[/math].

Also, i meant [math]\Phi[/math] maybe?

i meant [math]\sum_{d|n}\varphi(n)=n[/math].

Proof: Let [math]S=\{n \in \mathbb{Z}^+ \text{such that} \sum_{d|n}\varphi(n) \neq n[\math]....

[math]S=\{n \in \mathbb{Z}^+ \text{such that} \sum_{d|n}\varphi(n) \neq n[/math]....****

Assume [math]S[/math] is nonempty. Then by the Well Ordering Principle, [math]min\{S\}[/math] exists, call it [math]m[/math]. We know that [math]1 \not \in S[/math] because [math]\varphi(1)=1[/math]. So [math]m>1[/math]. So we can uniquely factorize [math]m = p_1^{a_1}p_2^{a_1}...p_k^{a_k}[/math]...

>So we can uniquely factorize [math]m = p_1^{a_1}p_2^{a_1}...p_k^{a_k}[\math]...

>>So we can uniquely factorize [math] m = p_1^{a_1}p_2^{a_1}...p_k^{a_k} [/math]...

...

Nice matrix :^)

[math]\int not sure if Im doing this right dt[/math]

Why can't I seen them ?

[math]\displaystyle \int _a ^b x \mathrm d x = \frac {b^2 - a^2} 2 [/math]

[math] \begin{tikzcd}[column sep=tiny]
& \pi_1(U_1) \ar[dr] \ar[drr, "j_1", bend left=20]
&
&[1.5em] \\
\pi_1(U_1\cap U_2) \ar[ur, "i_1"] \ar[dr, "i_2"’]
&
& \pi_1(U_1) \ast_{ \pi_1(U_1\cap U_2)} \pi_1(U_2) \ar[r, dashed, "\simeq"]
& \pi_1(X) \\
& \pi_1(U_2) \ar[ur]\ar[urr, "j_2"’, bend right=20]
&
&
\end{tikzcd} [/math]

Seems one can't [math]\LaTeX[/math] category theory on Veeky Forums.

The d is too high. What the hell, LaTeX!

This doesn't look all too good.

Really cool! How did you manage not to mess up the brackets and stuff?

[math] put a fucking space [/math] in between your code and the brackets.

This makes me sad.

[math] \begin{matrix} & & A & \overset{f}{\longrightarrow} & B & \overset{g}{\longrightarrow} & C & \longrightarrow & \mathbf{1} \\ & & ~~\downarrow a & & ~~\downarrow b & & ~~\downarrow c \\
\mathbf{1} & \longrightarrow & A' & \overset{f'}{\longrightarrow} & B' & \overset{g'}{\longrightarrow} & C'
\end{matrix} [/math]

please work

Yes, the ugly matrix hack, but — good luck doing even a simple product diagram.

How can you make the arrows longer?

The matrix hack is ugly and unnatural and regardless can do only planar grid diagrams. But if you really want, let's see if the following words here (it won't): [math] \xrightarrow{\hspace*{5cm}} [/math]

Let [eqn] \mathcal{M}_{g,\mathbb{F}_p}^{\mathrm{Zzz...}} [/eqn] be the moduli stack classifying proper smooth curves of genus [math] g > 1 [/math] over [math] \mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} [/math] together with a [math]dormant[/math] indigenous bundle (cf. the notation "Zzz..."!). It is known (cf. Theorem 3.3) that [math] \mathcal{M}_{g,\mathbb{F}_p}^{\mathrm{Zzz...}} [/math] is represented by a smooth, geometrically connected Deligne-Mumford stack over [math] \mathbb{F}_p [/math] of dimension [math] 3g-3 [/math]. Moreover, if we denote by [math] \mathcal{M}_{g,\mathbb{F}_p} [/math] the moduli stack classifying proper smooth curves of genus g over [math] \mathbb{F}_p [/math], then the natural projection [math] \mathcal{M}_{g,\mathbb{F}_p}^{\mathrm{Zzz...}} \rightarrow \mathcal{M}_{g,\mathbb{F}_p} [/math] is finite, faithfully flat, and generically étale.

[math]\color{green}{>babby's\ first\ moduli\ stacks}[/math]

[math] \color{RED}{\text{>babby's LAST moduli stacks}} [/math]

[math]Kek[\math]

[math]Kek[/math]

How do you latex in safari

By throwing your iToy out the window.

By having a program do it.

\begin{pmatrix}\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}&\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}\\\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}&\begin{pmatrix}\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\\\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}&\begin{pmatrix}\text{:^)}&\text{:^)}\\\text{:^)}&\text{:^)}\end{pmatrix}\end{pmatrix}\end{pmatrix}

If you want to check if your [math]\rm \LaTeX[/math] is correct.

[eqn]\displaystyle \prod _{i = 1} ^\infty e^i = \frac 1 {\sqrt[12]{e}}[/eqn]

[math]\rm\LaTeX[/math]
[math]a^2 + b^2 = c^2[/math]
[math]\vec{F} = \frac{d\vec{p}}{dt}[/math]
[math]\rho e^{i\theta}=\rho(\cos \theta +i\sin \theta)[/math]
[math]\rm i\hbar \frac{\partial}{\partial t}\Psi(\bf {r},\rm t)= \hat H \Psi (\bf r,\rm t)[/math]

Why does Latex look so pretentious?

What is the correct way to draw commutative diagrams?

my cousin has this mutation, brown and blue

Tikzcd

[math]\Psi(3d_{0})={\frac {1}{81{\sqrt {6\pi }}}}\left({\frac {Z}{a_{0}}}\right)^{\frac {3}{2}}{\frac {Z^{2}r^{2}}{a_{0}^{2}}}e^{-\textstyle {\frac {Zr}{3a_{0}}}}(3\cos ^{2}\theta -1)[/math]
[math]\Psi(3d_{\pm1})={\frac {1}{81{\sqrt {\pi }}}}\left({\frac {Z}{a_{0}}}\right)^{\frac {3}{2}}{\frac {Z^{2}r^{2}}{a_{0}^{2}}}e^{-\textstyle {\frac {Zr}{3a_{0}}}}\sin \theta \cos \theta e^{\pm i\phi }[/math]
[math]\Psi(3d_{\pm2})={\frac {1}{162{\sqrt {\pi }}}}\left({\frac {Z}{a_{0}}}\right)^{\frac {3}{2}}{\frac {Z^{2}r^{2}}{a_{0}^{2}}}e^{-\textstyle {\frac {Zr}{3a_{0}}}}\sin ^{2}\theta e^{\pm 2i\phi }[/math]

personally i like to put non-exponentiated fractions in \dfrac

[math]
\Psi(3d_{0})={\dfrac {1}{81{\sqrt {6\pi }}}}\left({\dfrac {Z}{a_{0}}}\right)^{\frac {3}{2}}{\dfrac {Z^{2}r^{2}}{a_{0}^{2}}}e^{-\textstyle {\frac {Zr}{3a_{0}}}}(3\cos ^{2}\theta -1)
[/math]

Any recommended text to lean [math]\LaTeX [/math]?

[math]
\int_a^b f(x) \cdot g'(x) dx = [f(x) \cdot g(x)] - \int_a^b f'(x) \cdot g(x) dx
[/math]
let's see here

>not one Knuth arrow up
No seriously, fuck you all.

Will I get good at integration if I learn all these results?
I really suck at integrating.

it's not a result, it's a technique. integrating by parts just makes some integrations easy because f(x) might be x which makes f'(x) 1.

[math]\displaystyle{\not} \partial [/math]

[math] 2^{2} [/math]

>safari

[eqn]e^{i\pi}=lel[/eqn]

[math] V-E+F=2 [/math]

[math]
\rm \LaTeX \text{ is for faggots}
[/math]

The notation used will be the following:
[math]\rho[/math] = a-c component of charge density
[math]\rho_0[/math] = average value of charge density
v = a-c component of electron velocity
[math]v_o[/math] = average value of electron velocity
[math]J_z[/math]= a-c component of current density
[math]J_0[/math]= average value of current density
[math]\frac {e}{m}[/math]= ratio of charge to mass of electron

Thus:
[math]\vec{J} \, = \,\vec{i_r} J_r \,+ \, \vec{i_\phi} J_\phi \,+ \, \vec {i_z} (J_z \,+ \, J_0)[/math]
[math]\rho_T \, =\, \rho_0 \, + \, \rho[/math]
where the [math]\vec {i}[/math] are unit vectors in cylindrical coordinates.

Continuity of charge demands that:

(10)
[math]\nabla \cdot \, \vec {J} \,+ \, \frac {\partial \rho_T}{\partial_t} \, = \,0 [/math]
since
[math]J_\phi \, = \, J_r \, = \, 0 [/math]
and
[math] \frac {\partial J_0}{\partial_z} \, = \, \frac {\partial \rho_0}{\partial_t} \, = \, 0 [/math]
the continuity equation becomes:
[math] \frac {\partial J_z}{\partial_z} \, = \, - \frac {\partial \, \rho}{\partial t} [/math]
or

(11) [math] J_z \, = \, \frac {j\omega}{\gamma} \, \rho [/math]

The force equation for non-relativistic motion is:
(12)
[math]\vec{F} \, = \, q \; |\vec{E} \, + \, \vec{v} \cdot \vec{B}|[/math]

Since the velocity of the electrons is a small fraction of the velocity of light, the force due to the magnetic field can be neglected in comparison to the force due to the electric field, so that:
(13)
[math] \frac {d}{dt} \, (v_0 \, + \, v) \, = \, - \frac {e}{m} \, E_z [/math]

Now
(14)
[math] \frac {d}{dt} \, (v_0 \, + \,v) \, = \; \frac {dv}{dt} \, = \; \frac {\partial v}{\partial t} \, + \: v_0 \, \frac {\partial v}{\partial z} \, = \; v_0 \, (j \frac {\omega}{v_0} \, - \gamma )v [/math]

Then eq (13) can be written as:
(15)
[math] v \, = \, \frac { (- \frac {e}{m} ) \, E_z}{v_o \, (j \, \frac {\omega}{v_0} \, - \, \gamma )} [/math]

[math]\mathrm{I~came.}[/math]

pastebin the code plx

...

>he doesn't know how to right-click to see the code

[math]CH_{4}+2O_{2}=Cancer+2H_{2}O[/math]

\sum_{j=0}^{N-1} E(\psi_{j}) \geq (2\pi)^2 \frac{d}{d+2} \left( \frac{d}{|\mathbb{S}^{d-1}|} \right)^{2/d} N^{1+2/d} \frac{1}{|\Omega|^{2/d}}

[math] \sum_{j=0}^{N-1} E(\psi_{j}) \geq (2\pi)^2 \frac{d}{d+2} \left( \frac{d}{|\mathbb{S}^{d-1}|} \right)^{2/d} N^{1+2/d} \frac{1}{|\Omega|^{2/d}} [math

Can anyone figure out the TeX preview button at the top left of the post window? Anyone at all? It's so mysterious and incomprehensible.

[math]\iiint{Hi faggots}[/math]

[math/]LaTex condoms give me rashes[/math]

This is fun.

[math]
T = T^{\mu_1...\mu_k}_{\nu_1...\nu_l}\omega^{(1)}_{\mu_1}...\omega^{(k)}_{\mu_k}V^{(1)\nu_1}...V^{(l)\nu_l}}
[/math]

[math]
Cum inside of me daddy
[/math]

[math]Ef\; =\; \frac{x^{2}}{2}f\; - \; \frac{1}{2}\frac{d^2\! f}{dx^2}[/math]

[math]\int_{-\infty }^{\infty }\; f^{*}\! f \;\; \mathrm{d} x\; = \; 1[/math]

[math]fuck[/math]

[eqn] \color{red}{>2016}[/eqn]

[eqn] \color{red}{>still} \hspace{2mm} \color{red}{green \hspace{2mm} posting}[/eqn]