Gaussian biatch

[math]\int _{-\infty} ^{+\infty} e^{a x^2} dx=sqrt{\pi / a}

it's dangerous to go alone, take this

[/math]

[\math]\int e^{a x^2} dx

cant get it right :( [/math]\int e^x dx

Are you trolling or legit that blind

not trolling new to Veeky Forums how the fuck can i write in LaTeX notation

do [/math] at the start of a line instead of [\math] you dungus
even dumb anime posters are smart when compared to you, get a grip

imagine being this bad at anything

[/math] \int dx

[math] \int_0^{\inf} my brain = 0 [/math]

HELPP ME

[eqn] \sum_{OP} \text{brain power} = 0[/eqn]

HELP me you fuck i will kill myself if i cant write math notation

[math] \textrm{I am impressed this thread hasn't been baleeted yet.} [/math]

[math] W = \displaystyle\int\limits_{x_{1}}^{x_{2}} \vec{F}\ d\mathbf{x} [/math]

[math] \int \int \int \int \int \int \int \cdots [/math]

H E L P [/math]\int

OP you cocking nora, watch this:

[eqn] \frac{\partial u}{\partial t} = \kappa \nabla^2 u [/eqn]

[eqn] \xi\ \epsilon\ \beta\ \Gamma [/eqn]

you are the reason i might kill myself later tonight plz help me

you forgot the dot you fucking idiot its a line integral

why wait till tonight? just end it right now. livestream it

[eqn] W = \displaystyle\int\limits_{x_{1}}^{x_{2}} \vec{F}\ \cdot d\mathbf{x} [/eqn]

Gotta get that inner product right. How's this?

i will cry i really want to be able to write like you please help me :/

OP what even was the point of this thread?

you are fine, even if you bolted the dx instead of the vector notation

looks okay user. to be very pedantic, in mathematical typesetting, the d in the differential should be print, not script.

[math]W = \displaystyle\int\limits_{x_{1}}^{x_{2}} \vec{F}\ \cdot \text{d}\mathbf{x}[/math]

i dont know how to write in LaTeX notation...

I have seen vectors as bold face before. Maybe I am just retarded and I don't know the standard.

maybe its just that. can you now please tell me how to write in proper notation?? [/math] doesnt work for me

hey dumbass. you have to put a [ math] tag at the beginning and a [ /math] tag at the end. without the spaces

[math]\int e^{a x^2} dx[ /math]

WITHOUT THE SPACES IN THE TAG YOU IDIOT

>[ math]\int[ /math] [ math]e^{a x^2} dx[ /math]

WITHOUT
THE
SPACES
holy CHRIST how do you even eat food without killing yourself?

people like you are the reason they have to put instructions on shampoo bottles

[math]\int[/math]

[math]\int[/math] [math]e^{a x^2}dx[/math]

THANK YOUUUUU :3

There you go!

Use [ eqn] [ /eqn] as you'd use a \begin{equation}, end{equation}, and use [ math] [ /math] as you'd use $ ... $, again WITHOUT THE SPACES.

[math]G_{\mu \nu}[/math] = k[math]T_{\mu \nu}[/math]

[eqn] \textit{very nice, I likey} [/eqn]

[math]\color{green}{\succ \textit{tfw no qt}\ \pi\ \textrm{GF}}[/math]

What do you mean?

[math] \int _{\partial \Omega} \omega [/math] = [math] \int _{\Omega} d\omega [/math]

[math] V*:=Hom(V,\mathbb{K}) [\math]

>[math]V* := Hom(V,\mathbb{K})[\math]

>>[math]V* := Hom(V,K)[\math]

[ /math] you blithering idiot

>>[math]V* := Hom(V,\mathbb{K})[/math]

I L O V E Y O U

[math] %V*:=Hom(V,\mathbb{K}) [/math]

ITT: Troll convinces people to typeset things for him.

im not a troll dude its my first day at Veeky Forums :p

[math]\color{green}{\succ\textit{That feeling when I have no cutey pie Gallois field}}[/math]

test

[math]\sum_{n=1}^\infty n = - \frac{1}{12}[/math]

[math]\displaystyle{\sum_{k=1}^{\infty} \frac{-1}{12} = \frac{-1}{12} [/math]

get outta here

[math]\displaystyle\int _{~-\infty}^{\!\infty} \!\!\!\!\!e^{a{{}^{{}_{{}_{{}_{\displaystyle{{}_{x{}^{{}^2}}}}}}}}} \!\!\mathrm{c\!\!\,l}~\,\!\!x~{}_{-}^{-}\sqrt{{-}^{\!\!\!\pi}_{\!\!\!a}}[/math]

YES! you WIN!

[math]T_p ^q \in V^{*} \tens V^{*} \tens \ldots \tens V^{*} \tens V \tens \ldots \tens V

>[math]T_p ^q \in V^{*} \tens V^{*} \tens \ldots \tens V^{*} \tens V \tens \ldots \tens V [/math]

>>Tqp∈V∗\tens V∗\tens …\tens V∗\tens V \tens … \tens V

[math]
\frac{1}{\displaystyle 1+
\frac{1}{\displaystyle 2+
\frac{1}{\displaystyle 3+\frac{1}{\displaystyle 1+
\frac{1}{\displaystyle 2+
\frac{1}{\displaystyle 3+x}}}}}} +
\frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}[/math]

[math]\tiny a[/math]

[math]\begin{align}
B'&=-\nabla \times E,\\
E'&=\nabla \times B - 4\pi j,
\end{align}[/math]
[math]\begin{gather*}
a_0=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\,\mathrm{d}x\\[6pt]
\begin{split}
a_n=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cos nx\,\mathrm{d}x=\\
=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}x^2\cos nx\,\mathrm{d}x
\end{split}\\[6pt]
\begin{split}
b_n=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\sin nx\,\mathrm{d}x=\\
=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}x^2\sin nx\,\mathrm{d}x
\end{split}\\[6pt]
\end{gather*}[/math]
[math]\begin{equation}
\boxed{\begin{equation}
x = a_0 + \frac{1}{\displaystyle a_1
+ \frac{1}{\displaystyle a_2
+ \frac{1}{\displaystyle a_3
+ \frac{1}{\displaystyle a_4}}}}
\end{equation}}
\end{equation}[/math]

Well played...
[math] \frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = 0[/math]

Or, [math] \partial_{\mu} j^{\mu}=0[/math]